Browse Publications Technical Papers 2015-24-2471

Development of a Quasi-Dimensional Spray Evaporation and Mixture Formation Model for Direct-Injection Spark-Ignition Engines 2015-24-2471

This paper presents a phenomenological quasi-dimensional model of the processes that lead to charge preparation in a Direct-Injection Spark-Ignition (DI-SI) engine, focusing on the physics of atomization and drop evaporation, spray development and the mutual interaction between these phenomena. Atomization and drop evaporation are addressed by means of constant-diameter drop parcels, which provide a discrete drop-size distribution. A discrete Probability Density Function (PDF) approach to fuel/air mixing is proposed, based on constant-mixture-fraction classes that interact with each other and with the drop parcels. The model has been developed in the LMS Imagine.Lab Amesim™ system simulation platform for multi-physical modeling and integrated in a generic SI combustion chamber submodel, CFM1D [15], of the IFP-Engine library.
The validation of the approach is performed on an experimental test case consisting of a high pressure isooctane injection in a constant volume vessel for which mie-scattering and high-speed schlieren visualizations for different thermodynamic conditions were performed at IFPEN within the framework of the French government MAGIE R&D project. Liquid and vapor penetration as well as spray angle data from experiments are then used to tune the RANS CFD simulations performed with the IFP-C3D code. CFD provides further data which is not directly available from the experiments such as drop size and charge distributions as well as spray properties outside the optical measurement field, which are then used to tune and validate the 0D model.
Good accordance is found between validation data and the results obtained with the proposed model showing the advantages of a detailed - though phenomenological - description of the main phenomena involved.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Direct Injection Concept as a Support of Engine Down-Sizing


View Details


An Analysis of 3D Simulation of SI Combustion with an Improved Version of the KIVA-3V Code: Numerical Formulation and Experimental Validation


View Details


A Refinement of Flame Propagation Combustion Model for Spark-Ignition Engines


View Details