Browse Publications Technical Papers 2016-01-0335

Fanuc Family Inverse Kinematics Modeling, Validation and Visualization 2016-01-0335

Inverse kinematic solutions of six degree of freedom (DOF) robot manipulation is a challenging task due to complex kinematic structure and application conditions which affects and depend on the robot’s tool frame position, orientation and different possible configurations. The robot trajectory represents a series of connected points in three dimensional space. Each point is defined with its position and orientation related to the robot’s base frames or users teach pendant. The robot will move from point to point using the desired motion type (linear, arc, or joint). This motion requires inverse kinematic solution. This paper presents a detailed inverse kinematic solution for Fanuc 6R (Rotational) robot family using a geometrical method. Each joint angular position will be geometrically analyzed and all possible solutions will be included in the decision equations. The solution will be developed in a parametric manner to cover the complete Fanuc six DOF family. This result will be used for modeling and simulation purposes, even design of a new robotic systems and for understanding the robots physical limitations which is important for path planning. The validation and visualization of the developed equation were performed with robot mathematical model and actual Fanuc LR Mate 200ic robot. Complex teach pendant points were created with both robots which information was used to recreate the same points using equation derived in this paper. The tests show that the inverse kinematics solution is correct and very accurate.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Optimization of Single-Point Frontal Airbag Fire Threshold


View Details


Analytical Methods for Aircraft Seat Design and Evaluation


View Details


Modeling and Simulation of a MacPherson Vehicle Suspension Concept Using Multibody Systems Techniques


View Details