Browse Publications Technical Papers 2016-01-0599

CFD Modeling of an Auxiliary Fueled Turbulent Jet Ignition System in a Rapid Compression Machine 2016-01-0599

Three-dimensional numerical simulation of the turbulent jet ignition combustion process of a premixed methane-air mixture in a Rapid Compression Machine (RCM) was performed using the Converge computational software. Turbulent jet ignition is a prechamber initiated combustion system that can replace the spark plug in a spark ignition engine. The prechamber is a small volume chamber where an injector and spark plug are located and is connected to the main combustion chamber via one or multiple small orifices. Turbulent jet ignition is capable of enabling low temperature combustion, through either lean or dilute combustion. A RANS model, which included a k-ε turbulence model to solve the mean flow and the SAGE chemistry solver with a reduced methane mechanism to solve the chemistry, was used to model the turbulent jet ignition system.
The novelty of this research is the investigation of the impacts of an auxiliary fueled prechamber on the burn rate and on the lean or dilute limit extension of the RCM. The numerical results are compared to data and optical images obtained from high speed imaging of combustion in the optically accessible RCM. The results show that the simulation accurately predicts the combustion process and also gives insight into the mean velocity of the turbulent jet and the density and temperature variation in the entire domain, which cannot be measured experimentally.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Pulsed Combustion Jet Ignition in Lean Mixtures


View Details


Flow Field Effects on Flame Kernel Formation in a Spark-Ignition Engine


View Details


Comparative Study of Ignition Systems for Lean Burn Gas Engines in an Optically Accessible Rapid Compression Expansion Machine


View Details