Browse Publications Technical Papers 2016-01-0620
2016-04-05

A Review of Spark-Ignition Engine Air Charge Estimation Methods 2016-01-0620

Accurate in-cylinder air charge estimation is important for engine torque determination, controlling air-to-fuel ratio, and ensuring high after-treatment efficiency. Spark ignition (SI) engine technologies like variable valve timing (VVT) and exhaust gas recirculation (EGR) are applied to improve fuel economy and reduce pollutant emissions, but they increase the complexity of air charge estimation. Increased air-path complexity drives the need for cost effective solutions that produce high air mass prediction accuracy while minimizing sensor cost, computational effort, and calibration time. A large number of air charge estimation techniques have been developed using a range of sensors sets combined with empirical and/or physics-based models. This paper provides a technical review of research in this area, focused on SI engines. The purpose is to provide an overview of current SI engine air charge estimation techniques and their performance in key areas such as transient and steady-state accuracy, calibration effort and computational load. Several common air estimation methods are replicated and compared over similar operating conditions. Particular focus is given to methods utilizing mass air flow (MAF) sensors, speed-density algorithms, and observers. Speed density approaches evaluated include those with neural networks and physics-based volumetric efficiency models. Observer methods employing open-loop air charge, high gain input and Extended Kalman Filters (EKF) are also evaluated and compared.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Adaptive Air/Fuel Ratio Controller for SI Engine Throttle Transients

1999-01-0552

View Details

TECHNICAL PAPER

Model-Based Control and Cylinder-Event-Based Logic for an Ultra-Low Emissions Vehicle

970531

View Details

TECHNICAL PAPER

Neural Adaptive Ignition Control

981057

View Details

X