Browse Publications Technical Papers 2016-01-0646

Evaluation of EGR Effect on the Global Energy Balance of a High Speed DI Diesel Engine 2016-01-0646

Regulated emissions and fuel consumption are the main constraints affecting internal combustion engine (ICE) design. Over the years, many techniques have been used with the aim of meeting these limitations. In particular, exhaust gas recirculation (EGR) has proved to be an invaluable solution to reduce NOx emissions in Diesel engines, becoming a widely used technique in production engines. However, its application has a direct effect on fuel consumption due to both the changes in the in-cylinder processes, affecting indicated efficiency, and also on the air management. An analysis, based on the engine Global Energy Balance, is presented to thoroughly assess the behavior of a HSDI Diesel engine under variable EGR conditions at different operating points. The tests have been carried out keeping constant the conditions at the IVC and the combustion centering. The analysis includes a combination of theoretical (0-D and 1-D modelling) and experimental tools (heat rejection and wall temperature measurement) that have been used to ensure control of in-cylinder conditions and to provide detailed explanation of the different phenomena affecting engine efficiency when the EGR is modified. Based on these tools, the impact of EGR on the engine performance, the heat transfer in the chamber and the global energy split of the engine are analyzed in detail. Main conclusions obtained show that indicated efficiency is mainly controlled by two factors, the changes in the combustion process and the heat transfer, while pumping losses dominate brake thermal efficiency.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Demonstration of Single-Fuel Reactivity Controlled Compression Ignition Using Reformed Exhaust Gas Recirculation


View Details


Numerical Investigation of the Potential of Late Intake Valve Closing (LIVC) Coupled with Double Diesel Direct-Injection Strategy for Meeting High Fuel Efficiency with Ultra-Low Emissions in a Heavy-Duty Reactivity Controlled Compression Ignition (RCCI) Engine at High Load


View Details


Experimental Analysis of the Operating Parameter Influence on the application of Low Temperature Combustion in the Modern Diesel Engines


View Details