Browse Publications Technical Papers 2016-01-0696
2016-04-05

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel 2016-01-0696

Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation. To support the experimental activity and to better understand the effects of local flow and turbulence on the combustion process, CFD simulations were carried out at both reacting and non-reacting conditions using the OpenFOAM code with suitable libraries (Lib-ICE) developed for combustion modeling. The full vessel geometry was considered and the rotation of the fan, used to generate turbulence and velocity fields, was modeled. In this way it was possible to identify the expected combustion regimes and to clarify the effects of the spark-plug geometry on the flame propagation process.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Effects of Fuel Properties on the Stratified-Charge Combustion of Direct-Injection Gasoline Engine with EGR

2003-01-1867

View Details

JOURNAL ARTICLE

Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions

2011-24-0105

View Details

TECHNICAL PAPER

Various effects of EGR on combustion and emissions on an automotive DI Diesel engine: numerical and experimental study

2007-01-1834

View Details

X