Browse Publications Technical Papers 2016-01-0784
2016-04-05

Numerical Study of Gasoline Homogeneous Charge Induced Ignition (HCII) by Diesel with a Multi-Component Chemical Kinetic Mechanism 2016-01-0784

Homogeneous Charge Induced Ignition (HCII) combustion is believed to be a promising approach to achieve clean and high efficiency combustion. HCII can be realized by using port-injection of the high-volatile fuel (gasoline) to prepare in-cylinder homogeneous charge and direct injection of the high-ignitable fuel (diesel) near the top dead center to control the start of combustion. In the current study, a numerical study was carried out to understand the mixing and auto-ignition process in HCII combustion. A multicomponent chemical kinetic mechanism for gasoline and diesel, consisting of n-heptane, iso-octane, ethanol, toluene, diisobutylene and n-decane, has been developed for predicting their ignition and oxidation. The final mechanism consists of 104 species and 398 reactions. This mechanism was validated with the experimental data of ignition delay times and laminar flame speeds for each component and real transportation fuels. Then the mechanism was coupled into HCII CFD simulation. The simulation exhibited good performance in capturing the combustion processes of HCII. The trends of measured data for each emission were well predicted. It was found that, in HCII, the first stage of heat release was mainly caused by the ignition of diesel. Then the combustion spread across the gasoline charge, leading to the second stage of heat release. The unburned hydrocarbon in the crevice might be one of the main reasons for the high HC emissions of HCII. Overall, the good agreement between predicted and measured data indicated that the current mechanism could be used for duel-fuel combustion mode in practical applications.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Study of Ethanol-Blended Fuel (E85) Effects Under Cold-Start Conditions

2009-01-0620

View Details

TECHNICAL PAPER

Multi-bodies Simulation in Automotive Mechanical Systems Transmission Application

2009-36-0102

View Details

JOURNAL ARTICLE

Role of Engine Speed and In-Cylinder Flow Field for Stratified and Well-Mixed DISI Engine Combustion Using E70

2014-01-1241

View Details

X