Browse Publications Technical Papers 2016-01-0785

Advanced Knock Detection for Diesel/Natural Gas Engine Operation 2016-01-0785

As emission limits become increasingly stringent and the price of gaseous fuels decreases, more emphasis is being placed on promoting gas engines. In the field of large engines for power generation, dual fuel combustion concepts that run on diesel/natural gas are particularly attractive. Knock in diesel/natural gas dual fuel engines is a well known yet not fully understood complex phenomenon that requires consideration in any attempt to increase load and efficiency. Thus combustion concept development requires a reliable yet robust methodology for detecting knock in order to ensure knock-free engine operation.
Operating parameters such as rail pressure, start of injection and amount of diesel injected are the factors that influence oscillations in the in-cylinder pressure trace after the start of combustion. Oscillations in the pre-mixed combustion phase, or ringing, are caused by the rapid conversion of large parts of the injected diesel. This effect may lead to misinterpreting non-knocking combustion cycles determined from the in-cylinder pressure trace data or knock sensor data.
This paper describes a new knock detection methodology based on the in-cylinder pressure trace and knock sensor data applied to a diesel/natural gas dual fuel large engine. The approach compares oscillations in the pre-mixed diesel combustion phase to oscillations in the main combustion phase. Parameters that provoke oscillations (rail pressure, start of injection and amount of diesel injected) as well as other parameters influencing knock (IMEP, excess air ratio, manifold air temperature, methane number and compression ratio) are investigated and discussed. This specific approach requires only two steady threshold limits to cover all these parameters influencing knock and to distinguish between knocking and non-knocking combustion cycles.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
We also recommend:

A Study on Performance Improvement of Natural Gas Engine


View Details


An Experimental Study on High Pressure Pulsed Jets for DI Gas Engine Using Planar Laser-Induced Fluorescence


View Details


Effect of the Shape of the Combustion Chamber on Dual Fuel Combustion


View Details