Browse Publications Technical Papers 2016-01-0794

Comparison of RCCI Operation with and without EGR over the Full Operating Map of a Heavy-Duty Diesel Engine 2016-01-0794

Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve high efficiency combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions. A key requirement for extending to high-load operation is reduce the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Natural gas/diesel RCCI engine operation is compared over the EPA Heavy-Duty 13 mode supplemental emissions test with and without EGR. Emissions and efficiency metrics were examined over the entire engine map for both operating modes. It was found that the use of EGR lowered combustion noise to less than 97 dBa and lowered the cycle averaged NOx emissions by 48%, with only a slight increase in soot and 0.5 point decrease in brake thermal efficiency. Thus, operation with EGR offered the lowest total fluid consumption when considering the use of a selective catalytic reduction system for NOx aftertreatment.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Efficacy of In-Cylinder Control of Particulate Emissions to Meet Current and Future Regulatory Standards


View Details


In-Cylinder Combustion Control Strategy to Meet Off-Road Emission Norms with Conventional Mechanical Fuel Injection System


View Details


Mixer Development for Urea SCR Applications


View Details