Browse Publications Technical Papers 2016-01-1072
2016-04-05

Robust Methodology for Fast Crank Angle Based Temperature Measurement 2016-01-1072

The paper presents a measurement methodology which combines a fine-wire thermocouple with input reconstruction in order to measure crank angle resolved temperature in an engine air-intake system. Thermocouples that are of practical use in engine experiments tend to have a large time constant which affects measurement accuracy during rapid temperature transients. Input reconstruction methods have previously been applied to thermocouples but have not been specifically used in combination with an ultra-thin uninsulated wire thermocouple to investigate cyclic intake temperature behavior. Accurate measurement results are of interest to improve the validity of many crank-angle resolved engine models. An unshielded thermocouple sensor has been developed which is rigid enough to withstand the aerodynamic forces of the intake air. The nonlinear dependency of the sensor time constant was linearized and characterized at a number of mass flow rates by applying an identification method which uses two thermocouples with different diameters. For this purpose a test rig was designed to generate temperature step inputs at constant mass flow rates. A discrete time model of the sensor is finally directly inverted to reconstruct the true gas temperature. The results presented show how the sensor time constant was identified at several mass flow rates to establish a simple regression model describing the time constant as a function of air mass flow. Cyclic temperature data are finally presented including quick temperature transients caused by throttle tip-in and tip-out. The results are analyzed and compared with simulation results from a 1D engine model. This method simplifies previously demonstrated approaches and also applies, for the first time, the methodology for the purpose of intake-side cyclic temperature measurement.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Quantification of Instantaneous Diesel Flow Rates in Flow Generated By a Stable and Controllable Multiple Injection System (ROSA)

2004-01-0028

View Details

TECHNICAL PAPER

The Timing of Pre-Crash Data Recorded in General Motors Sensing and Diagnostic Modules

2006-01-1397

View Details

TECHNICAL PAPER

Evaluation of MAST Transfer Function in the Vehicle Exhaust System Full System Durability Test

2002-01-0802

View Details

X