Browse Publications Technical Papers 2016-01-1238
2016-04-05

A History-Based Load Requirement Prediction Algorithm, for Predictive Hybrid- and Thermal Operation Strategies 2016-01-1238

In hybrid electric vehicles (HEV), the operation strategy strongly influences the available system power, as well as local exhaust emissions. Predictive operation strategies rely on knowledge of future traction-force demands. This predicted information can be used to balance the battery’s state of charge or the engine’s thermal system in their legal operation limits and can reduce peak loads. Assuming the air and rolling drag-coefficient to be constant, the desired vehicle velocity, vehicle-mass and longitudinal driving resistances determine the vehicle’s traction-force demand. In this paper, a novel methodology, combining a history-based prediction algorithm for estimating future traction-force demands with the parameter identification of road grade angle and vehicle mass, is proposed. It is solely based on a route-history database and internal vehicle data, available on its on-board communication and measuring systems. It complements state-of-the-art navigation software, as these systems usually are not activated on frequently driven routes. In a first step, a Kalman filter estimates the vehicle mass and the current grade angle of the road online, using the vehicle’s longitudinal equation of motion. In a second step, velocity and road gradient are predicted. This is done by comparing online vehicle data with data stored in a route history. As the steering-wheel angle correlates well with the position on a given route, it is chosen as distinctive parameter for route identification. A longitudinal vehicle model calculates the approximated future traction-force demand from the predicted velocity and road gradient trajectory, considering the online estimated vehicle mass. Then the operation strategy can determine control variables, such as the upcoming loads to the propulsion units, for a certain prediction horizon ahead of the vehicle. Validation results of the prediction system are presented for an all-electric passenger car. However, computing and memory requirements for a real-time capable hardware are not considered.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Moving from Single-Core to Multicore: Initial Findings on a Fuel Injection Case Study

2016-01-0017

View Details

JOURNAL ARTICLE

Disturbance Estimation Based Modeling Technique for Control and Prediction in Controllable Mechanical Turbo-Compounding System

2016-01-0023

View Details

TECHNICAL PAPER

The Convergence of Multiple Vehicle Network Protocols: How to Select One Network over the Other and the Ensuing Variant Challenges

2016-01-0062

View Details

X