Browse Publications Technical Papers 2016-01-1455

Driver Behavior in Forward Collision and Lane Departure Scenarios 2016-01-1455

In 2010, 32,855 fatalities and over 2.2 million injuries occurred in automobile crashes, not to mention the immense economic impact on our society. Two of the four most frequent types of crashes are rear-end and lane departure crashes. In 2011, rear-end crashes accounted for approximately 28% of all crashes while lane departure crashes accounted for approximately 9%. This paper documents a study on the NADS-1 driving simulator to support the development of driver behavior modeling. Good models of driver behavior will support the development of algorithms that can detect normal and abnormal behavior, as well as warning systems that can issue useful alerts to the driver. Several scenario events were designed to fill gaps in previous crash research. For example, previous studies at NADS focused on crash events in which the driver was severely distracted immediately before the event. The events in this study included a sample of undistracted drivers. Additionally, this study included data collection on an unforced lane departure event, in addition to the forward collision scenarios. This paper summarizes the experimental design and results, including comparisons between these data and legacy data involving distracted forward collision events. This is the second study in a series of three funded by the Toyota Collaborative Safety Research Center.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Extension of the Honda-DRI “Safety Impact Methodology” (SIM) for the NHTSA Advanced Crash Avoidance Technology (ACAT) II Program and Application to the Evaluation of a Pre-Production Head-On Crash Avoidance Assist System - Progress Report


View Details


SIMON: A New Vehicle Simulation Model for Vehicle Design and Safety Research


View Details


Acceleration and Speeds of Young Pedestrians: Phase II


View Details