Browse Publications Technical Papers 2016-01-1481
2016-04-05

Bayesian Uncertainty Quantification for Planar Impact Crashes via Markov Chain Monte Carlo Simulation 2016-01-1481

A continuing topic of interest is how to best use information from Event Data Recorders (EDR) to reconstruct crashes. If one has a model which can predict EDR data from values of the target variables of interest, such as vehicle speeds at impact, then in principle one can invert this model to estimate the target values from EDR measurements. In practice though this can require solving a system of nonlinear equations and a reasonably flexible method for carrying this out involves replacing the inverse problem with nonlinear least-squares (NLS) minimization. NLS has been successfully applied to two-vehicle planar impact crashes in order to estimate impact speeds from different combinations of EDR, crush, and exit angle measurements, but an open question is how to assess the uncertainty associated with these estimates. This paper describes how Markov Chain Monte Carlo (MCMC) simulation can be used to quantify uncertainty in planar impact crashes. The basic ideas are first illustrated with a simple computational example and then the MCMC approach is applied to several examples which have been previously reconstructed using NLS. As would be expected, in each case the MCMC point estimates are similar to those produced by NLS, but defensible confidence intervals for the estimates are also produced.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Nonlinear Optimization in Vehicular Crash Reconstruction

2015-01-1433

View Details

TECHNICAL PAPER

Crush Stiffness Coefficients, Restitution Constants, and a Revision of CRASH3 & SMAC

980029

View Details

TECHNICAL PAPER

Animated Reconstruction of Automobile Collisions Using SMAC

880064

View Details

X