Browse Publications Technical Papers 2016-01-1795

Structure-Borne Noise Source Characterization from a Bayesian Point of View 2016-01-1795

In this paper, a local method of structure-borne noise source characterization is presented. It is based on measurements of transverse displacement and local structural operator knowledge and allows to localize and quantify sources without any need of boundary condition information. To fix the instability caused by measurement noise, the regularization step inherent to inverse problem is realized with a probabilistic approach, within the Bayesian framework. When a priori distributions about noise and sources are considered as Gaussian, the Bayesian regularization is equivalent to the well-known Tikhonov regularization. The optimization of the regularization is then performed by the Gibbs Sampling (GS) algorithm, which is part of Markov Chain Monte Carlo (MCMC) techniques. The whole probability of the regularized solution is inferred, providing access to confidence intervals. Both simulation and measurements of a beam excited by an harmonic point source are realized to validate this approach.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.