Browse Publications Technical Papers 2016-01-1986

Conceptual Design and Weight Optimization of Aircraft Power Systems with High-Peak Pulsed Power Loads 2016-01-1986

The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged. Thus, in order to maintain the weight advantage of MEA and to keep the normal functionality of the aircraft power system in the presence of a high-peak pulsed power load, this paper proposes a novel multidisciplinary weight optimization technique. The presented weight optimization method mainly focuses on comparing and evaluating the weights among different power electronics system structures based on subsystem weight models, including the gearbox, synchronous generator, power electronic converters and supercapacitors. Finally, through a case study, it is shown that a system weight reduction of 11.9 % can be attained when applying the proposed optimization method to down-select alternative system configurations.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Design and Implementation of a Distributed Thermal Control System for Power Electronics Components in Hybrid Vehicles


View Details


Application of Modeling Techniques to the Design and Development of Fuel Cell Vehicle Systems


View Details


High Current (>1000A), High Temperature (>200°C) Silicon Carbide Trench MOSFET (TMOS) Power Modules for High Performance Systems


View Details