Browse Publications Technical Papers 2016-01-9041
2016-03-14

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case 2016-01-9041

Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed. Then advanced SGS models such as the dynamic WALE and the Sigma models are compared with models traditionally used for LES simulations of ICE wall-bounded flows, i.e. the dynamic Smagorinsky and the WALE models. The proposed SGS models have been implemented in the open-source CFD code OpenFOAM®, extending its standard capabilities. Validation of the implemented models has been performed using two different test cases: the Dellenback abrupt expansion, which is presented in part I, and the Thobois stationary flow bench, presented in part II. The results have been evaluated through comparison with experimental data and the completeness of the LES simulations has been assessed using the aforementioned quality estimators.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Modeling of Two-Stroke Internal Combustion Engine Dynamics Using the Bond Graph Technique

750860

View Details

TECHNICAL PAPER

Analysis of Air/Cavitation Interaction Inside a Rotary Vane Pump for Application on Heavy Duty Engine

2009-01-1943

View Details

TECHNICAL PAPER

LES Analysis of Cyclic Variability in a GDI Engine

2014-01-1148

View Details

X