Browse Publications Technical Papers 2016-22-0004

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading 2016-22-0004

Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event. Jejunum tear, colon hemorrhage, omentum tear, splenic fracture and transverse processes fracture were identified during post-test anatomical dissection. Peak abdominal forces ranged from 2.8 to 4.7 kN. Peak abdominal penetrations ranged from 110 to 177 mm. A force-penetration corridor was developed from the PMHS tests in an effort to benchmark ATD biofidelity. Peak aortic pressures ranged from 30 to 104 kPa and peak IVC pressures ranged from 36 to 65 kPa. Updated pressure based abdominal injury risk functions were developed for vascular Ṗmax and P max*Ṗ max.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations


View Details


High-Speed Seatbelt Pretensioner Loading of the Abdomen


View Details


Experimental Studies of Side Impact to the Human Head


View Details