Browse Publications Technical Papers 2016-22-0007

Association of Impact Velocity with Risks of Serious Injuries and Fatalities to Pedestrians in Commercial Truck-Pedestrian Accidents 2016-22-0007

This study aimed to clarify the relationship between truck-pedestrian crash impact velocity and the risks of serious injury and fatality to pedestrians. We used micro and macro truck-pedestrian accident data from the Japanese Institute for Traffic Accident Research and Data Analysis (ITARDA) database. We classified vehicle type into five categories: heavy-duty trucks (gross vehicle weight [GVW] ≥11 × 103 kg [11 tons (t)], medium-duty trucks (5 × 103 kg [5 t] ≤ GVW < 11 × 103 kg [11 t]), light-duty trucks (GVW <5 × 103 kg [5 t]), box vans, and sedans. The fatality risk was ≤5% for light-duty trucks, box vans, and sedans at impact velocities ≤ 30 km/h and for medium-duty trucks at impact velocities ≤20 km/h. The fatality risk was ≤10% for heavy-duty trucks at impact velocities ≤10 km/h. Thus, fatality risk appears strongly associated with vehicle class. The results also revealed that a 10 km/h reduction in impact velocities could mitigate the severity of pedestrian injuries at impact velocities ≥30 km/h for all five analyzed vehicle types. Therefore, serious injuries and fatalities to pedestrians could be decreased by the development and deployment of collision mitigation systems (CMSs) to all vehicles, including to commercial trucks, because CMSs can detect pedestrians in even severe conditions, such as when the drive’s view is obstructed, and can reduce the impact velocity. The present results indicate that CMS design specifications should differ between vehicle types because of the strong dependence of serious-injury and fatality risks on vehicle type.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Results of an Analysis of Truck Accidents and Possibilities of Reducing Their Consequences Discussed on the Basis of Car-to-Truck Crash Tests


View Details


Large School Bus Side Impact Stiffness Factors


View Details


The Crash Test of Medium Duty Truck


View Details