Browse Publications Technical Papers 2017-01-0226
2017-03-28

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels 2017-01-0226

This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths. The ICME model calibration is implemented in the LS-OPT analysis tool as a component of an optimization process. The final result of the ICME Model calibration is a user-defined material subroutine, implemented in LS-DYNA finite element analysis software, which can be subsequently used in vehicle crashworthiness performance simulations.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Deformation, Strain and Stress in Expansion of Tubes in Hydroforming

2000-01-0769

View Details

TECHNICAL PAPER

Benefit of Structural Adhesives in Full Car Crash Applications

2014-01-0811

View Details

TECHNICAL PAPER

Advanced Finite Element Analysis of a Lightweight Nanometal-Polymer Hybrid Component with Experimental Validation, and Its Applications to Vehicle Lightweighting

2018-01-0152

View Details

X