Browse Publications Technical Papers 2017-01-0540

Experimental and Numerical Study of the Water Injection to Improve the Fuel Economy of a Small Size Turbocharged SI Engine 2017-01-0540

In this work, a promising technique, consisting of a liquid Water Injection (WI) at the intake ports, is investigated to overcome over-fueling and delayed combustions typical of downsized boosted engines, operating at high loads. In a first stage, experimental tests are carried out in a spark-ignition twin-cylinder turbocharged engine at a fixed rotational speed and medium-high loads. In particular, a spark timing and a water-to-fuel ratio sweep are both specified, to analyze the WI capability in increasing the knock-limited spark advance.
In a second stage, the considered engine is schematized in a 1D framework. The model, developed in the GT-Power™ environment, includes user defined procedures for the description of combustion and knock phenomena. Computed results are compared with collected data for all the considered operating conditions, in terms of average performance parameters, in-cylinder pressure cycles, burn rate profiles, and knock propensity, as well.
Finally, the validated model is applied to investigate the full potential of water injection in reducing the knock tendency and improving the fuel economy in a wide load range. The numerical results highlight that WI technique involves significant Brake Specific Fuel Consumption (BSFC) advantages, especially at the medium-high loads. These benefits are limited by the maximum allowable levels for the in-cylinder pressure, while additional advantages are obtained in terms of reduced turbine inlet temperature, turbocharger speed, and boost pressure.
The developed numerical procedure, based on validated combustion and knock sub-models, is able to take into account the complex interactions among different parameters, which affect the engine behavior. It is hence believed to realistically forecast the WI-related BSFC advantages and constraints, induced by thermo-mechanical stresses. Simultaneously, it underlines the need of a partial engine redesign to fully exploit WI potential.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
We also recommend:

SuperGen - A Novel Low Costs Electro-Mechanical Mild Hybrid and Boosting System for Engine Efficiency Enhancements


View Details


Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine


View Details


A Numerical Investigation on the Potentials of Water Injection as a Fuel Efficiency Enhancer in Highly Downsized GDI Engines


View Details