Browse Publications Technical Papers 2017-01-0551

Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine 2017-01-0551

Engine knock is one of the most limiting factors for modern Spark-Ignition (SI) engines to achieve high efficiency targets. The stochastic nature of knock in SI units hinders the predictive capability of RANS knock models, which are based on ensemble averaged quantities.
To this aim, a knock model grounded in statistics was recently developed in the RANS formalism. The model is able to infer a presumed log-normal distribution of knocking cycles from a single RANS simulation by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. As a main advantage, the model is able to estimate the earliest knock severity experienced when moving the operating condition into the knocking regime.
In this paper, improvements are introduced in the model, which is then applied to simulate the knock signature of a single-cylinder 400cm3 direct-injection SI unit with optical access; the engine is operated with two spark timings, under knock-safe and knocking conditions respectively. The statistical prediction of knock resulting from the presented knock model is compared to the experimental evidence for both investigated conditions.
The agreement between the predicted and the measured knock distributions validates the proposed knock model. Finally, limitations and some unprecedented possibilities given by the model are critically discussed, with particular emphasis on the meaning of RANS knock prediction.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
We also recommend:

Numerical Simulation and Flame Analysis of Combustion and Knock in a DISI Optically Accessible Research Engine


View Details


Knock Prediction of Two-Stage Ignition Fuels with Modified Livengood-Wu Integration Model by Cool Flame Elimination Method


View Details


Optimizing Engine Concepts by Using a Simple Model for Knock Prediction


View Details