Browse Publications Technical Papers 2017-01-0684
2017-03-28

The Impact of Engine Operating Conditions on Reformate Production in a D-EGR Engine 2017-01-0684

Dedicated EGR has shown promise for achieving high efficiency with low emissions [1]. For the present study, a 4-cylinder turbocharged GDI engine which was modified to a D-EGR configuration was used to investigate the impact of valve phasing and different injection strategies on the reformate production in the dedicated cylinder. Various levels of positive valve overlap were used in conjunction with different approaches for dedicated cylinder over fueling using PFI and DI fuel systems. Three speed-load combinations were studied, 2000 rpm 4 bar IMEPg, 2000 rpm 12 bar IMEPg, and 4000 rpm 12 bar IMEPg. The primary investigation was conducted to map out the dedicated cylinders' performance at the operating limits of intake and exhaust cam phasing. In this case, the limits were defined as conditions that yielded either no reformate benefit or led to instability in the dedicated cylinder. Based on the result of cam timing sweeps for both PFI and a DI strategy, valve timing strategies were developed to maximize reformate production. Further, a detailed sweep of dedicated cylinder equivalence ratio (Φ) was conducted at near optimum valve phasing to study the differences between various fuel injection strategies at each speed-load combination.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Second Generation of Electronic Diesel Fuel Injection Systems-Investigation with a Rotary Pump

860145

View Details

TECHNICAL PAPER

Running an ICE with Hydrogen as Fuel

951952

View Details

STANDARD

Fuel Injection Equipment Nomenclature

J830_201511

View Details

X