Browse Publications Technical Papers 2017-01-0773

The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion 2017-01-0773

Engine experiments were conducted on a heavy-duty single-cylinder engine to explore the effects of charge preparation, fuel stratification, and premixed fuel chemistry on the performance and emissions of Reactivity Controlled Compression Ignition (RCCI) combustion. The experiments were conducted at a fixed total fuel energy and engine speed, and charge preparation was varied by adjusting the global equivalence ratio between 0.28 and 0.35 at intake temperatures of 40°C and 60°C. With a premixed injection of isooctane (PRF100), and a single direct-injection of n-heptane (PRF0), fuel stratification was varied with start of injection (SOI) timing. Combustion phasing advanced as SOI was retarded between -140° and -35°, then retarded as injection timing was further retarded, indicating a potential shift in combustion regime. Peak gross efficiency was achieved between -60° and -45° SOI, and NOx emissions increased as SOI was retarded beyond -40°, peaking around -25° SOI. Optimal cases in terms of both gross efficiency and peak pressure rise rate (PPRR) were in the mid-range SOI timings centered about -50° SOI, while late SOI resulted in decreased gross efficiency, decreased combustion efficiency, and high NOx.
To assess the effect of the premixed fuel chemistry on RCCI combustion, a representative reformed fuel referred to as syngas (50% H2, 50% CO by volume), and methane were substituted for PRF100. A reference baseline PRF condition with an SOI timing of -50° at Tin = 40°C and ϕ = 0.30 was used for comparison purposes. Matching combustion phasing to the baseline case by adjusting the premixed percent or SOI timing resulted in reduced gross efficiency (ηg) and increased NOx emissions for both the syngas and methane cases. Matching the bulk heat release rate (HRR) characteristics by fixing the DI SOI quantity and duration and adding a premixed injection of n-heptane was able to regain most of the lost efficiency while decreasing NOx emissions close to the baseline level.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
We also recommend:

An Examination of the Combustion Processes of a Methane Fuelled Engine When Employing Plasma Jet Ignition


View Details


Analysis of the Combustion Characteristics of a HCCI Engine Operating on DME and Methane


View Details


Study of Combustion Development in Methane-Diesel Dual Fuel Engines, Based on the Analysis of In-Cylinder Luminance


View Details