Browse Publications Technical Papers 2017-01-0786

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine 2017-01-0786

Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify. The paper shows how knock-related information can be extracted both from accelerometer and acoustic signals, and how the correlation with in-cylinder pressure based indexes can be optimized using advanced signal processing algorithms and specific calibration methodologies, for a wide engine speed range. An optimization procedure that has involved all the calibration parameters that make up sound and vibration-based knock indexes, has allowed to successfully apply knock detection techniques up to 13,000 rpm. Experimental results obtained on the engine test bench are shown throughout the paper, demonstrating the feasibility of both approaches, which provide similar signal-to-noise ratio levels, and can therefore be considered as possible alternatives.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

An Introduction to How Low Speed Pre Ignition Affects Engine Components


View Details


Split-Injection in a Downsized Ethanol SIDI Engine Aiming to Mitigate Pre-Ignition


View Details


Parametric Simulation of Significant Design and Operating Alternatives Affecting the Fuel Economy and Emissions of Spark-Ignited Engines


View Details