Browse Publications Technical Papers 2017-01-0858
2017-03-28

Optical Methodology for Characterization of a Gasoline Direct Injection Closing Event Droplet Distribution 2017-01-0858

The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location are vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions [1]. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile [2]. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors is crucial to this task as the spray produces larger droplets during both theses phases. This paper presents the preliminary results from a novel method to characterize the closing phase of DISI injection. A Design of Experiments (DOE) was used to determine the effect of pressure, temperature, and pulse-width of the fuel spray after the closing event. Experiments determined that the primary source of controlling the droplet size and the mass post injector closing for a given injector was the temperature. This paper will outline the results of the DOE for a specific injector, and describe the method used to characterize the injector closing behavior.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Three-Dimensional Computation of the Effects of the Swirl Ratio in Direct-Injection Diesel Engines on NOx and Soot Emissions

961125

View Details

TECHNICAL PAPER

Use of Renewable Oxygenated Fuels in Order to Reduce Particle Emissions from a GDI High Performance Engine

2011-01-0628

View Details

TECHNICAL PAPER

Fuel Injection Strategy for Clean Diesel Engine Using Ethanol Blended Diesel Fuel

2005-01-1725

View Details

X