Browse Publications Technical Papers 2017-01-0908

Conversion of Exhaust Gases from Dual-Fuel (Natural Gas-Diesel) Engine under Ni-Co-Cu/ZSM-5 Catalysts 2017-01-0908

Natural gas (NG), which consists of mostly methane, can be co-combusted with diesel fuel in existing compression ignition engines through dual fuel technology with reasonable engine modifications. The removal of short-chain alkanes (e.g. CH4, C2H6 and C3H8) of a dual fuel (natural gas and diesel) engine raises a distinctive topic to the exhaust aftertreatment system (ATS). However, there are few studies reported based on tests with real engine exhaust. This present study focuses on the conversion of short-chain alkanes by Co, Ni and Cu/ZSM-5 catalysts, which are commonly used for oxidation/partial oxidation and reforming. These catalysts are tested with exhaust of a dual-fuel (natural gas and diesel) engine. The complicated and dynamic exhaust composition, determined by the engine loading and natural gas substitution, can result in different components in the exhaust and various conversions for species. Co-Ni-Cu/ZSM-5 had the highest conversion of CH4 and non-methane hydrocarbon (NMHC) at 30000 h-1 space velocity (SV) when the engine was operated at 1000 RPM, 25% loading, 70% natural gas substitution. Significant amounts of CO and formaldehyde were generated by the dual fuel engine, but can be mostly converted starting at 450 °C. Methane conversion of up to 42% was attainable at a higher temperature of 500 °C by using Co-Ni-Cu/ZSM-5 in the aftertreatment system.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Impacts and Mitigation of Varying Fuel Composition in a Natural Gas Heavy-Duty Engine


View Details


Development and Validation of Power Performance Prediction Chart for Conversion of Diesel Engine to Dual Fuel Engine


View Details


Experimental Investigation of Cycle-by-Cycle Variations in a Natural Gas/Diesel Dual Fuel Engine with EGR


View Details