Browse Publications Technical Papers 2017-01-0913

Real Driving Emission Efficiency Potential of SDPF Systems without an Ammonia Slip Catalyst 2017-01-0913

In order to comply with emission regulation, reach their profitability targets and minimise the in-use cost of their vehicles, OEMs are seeking solutions to optimise their aftertreatment systems. For Selective Catalytic Reduction (SCR) system engineers, one of the most important challenges is to reduce the system's cost, while keeping its high level of NOx emission reduction performance. Ways to achieve this cost reduction include 1. using an engine out NOx estimation model instead of a NOx sensor upstream of the SDPF (DPF coated with SCR) catalyst and 2. eliminating the Ammonia Slip Catalyst (ASC) downstream of the SDPF catalyst. Achieving these challenging targets requires actions on the complete SCR system, from the optimisation of mixing and uniformity in the SDPF catalyst to the development of robust controls. To face these challenges, a novel exhaust reverse flow concept with a blade mixer was developed. With this concept, total mixing length and mixing performance were increased. The SDPF catalyst uniformity during transient and steady state operation of the engine has been investigated. On the controls side, robust engine out NOx, advanced ammonia storage modelling and robust system adaption controls were developed. Finally, the robustness of the whole SCR system against tolerances and errors through extended sensitivity analysis has been evaluated.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Twin-LNT System for Advanced Diesel Exhaust Gas Aftertreatment


View Details


Detailed Mechanism of S Poisoning and De-Sulfation Treatment of Cu-SCR Catalyst


View Details


Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System


View Details