Browse Publications Technical Papers 2017-01-0936
2017-03-28

Cascade MPC Approach to Automotive SCR Multi-Brick Systems 2017-01-0936

The paper provides an overview of a developed methodology and a toolchain for modeling and control of a complex aftertreatment system for passenger cars. The primary objective of this work is to show how the use of this methodology allows to streamline the development process and to reduce the development time thanks to a model based semi-automatic control design methodology combined with piece-wise optimal control. Major improvements in passenger car tailpipe NOx removal need to be achieved to fulfil the upcoming post EURO 6 norms and Real Driving Emissions (RDE) limits. Multi-brick systems employing combinations of multiple Selective Catalytic Reduction (SCR) catalysts with an Ammonia Oxidation Catalysts, known also as Ammonia Clean-Up Catalyst (CUC), are proposed to cover operation over a wide temperature range. However, control of multi-brick systems is complex due to lack of available sensors in the production configurations. Advanced control and inferential sensing techniques can address this complexity, making the control design task more straight forward and less error prone when compared to traditional control design approach. This paper shows an application of Model Predictive Control (MPC) to SCR multi-brick system. The key components of the control strategy are the following: system model including real-time observer, ammonia storage controller and efficiency controller. The system observer is implemented as extended Kalman filter (EKF) and both controllers in the cascade are implemented as MPC. Well established methodology supported by a toolchain is an enabler for minimizing the development time and to simplify the control design process.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-01-0988

View Details

TECHNICAL PAPER

Diesel Emission Control - Last 12 Months in Review

2000-01-2817

View Details

TECHNICAL PAPER

Development of a New HC-Adsorption Three-Way Catalyst System for Partial-ZEV Performance

2003-01-1861

View Details

X