Browse Publications Technical Papers 2017-01-1051
2017-03-28

Turbocharger First Order Synchronous Noise and Vibrations: Predictions and Measurements 2017-01-1051

EcoBoost engines constitute one of the strategies used by Ford Motor Company to deliver engines with improved fuel economy and performance. However, turbochargers exhibit many inherent NVH challenges that need to be addressed in order to deliver refined engines that meet customer’s expectation. One of these challenges is the turbocharger 1st order synchronous noise due to the interaction between the manufacturing tolerances of the rotating components and the dynamic behavior of the rotor.
This paper discusses an MBD/FEA/BEM based method to predict the nonlinear dynamic behavior of the rotor semi floating bearing, its impact on the bearing loads and the resulting powerplant noise due to the interaction with the turbocharger imbalance level. The MBD predictions of the bearing forces from the inner nonlinear hydrodynamic and outer semi floating squeeze damper bearings are used in an FEA/BEM analysis to predict the synchronous of turbocharger housing vibrations level and the synchronous powerplant radiated sound pressure.
Measurement data obtained for three different levels of turbocharger imbalance and for different engine conditions are presented in this paper. This data validates the analytical predictions of the rotor dynamic forces, the turbocharger housing vibrations and the powerplant radiated noise.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Experimental Method to Test Twin and Double Entry Automotive Turbines in Realistic Engine Pulse Conditions

2019-01-0319

View Details

TECHNICAL PAPER

Evaluating Engine Design for Low Noise Using Dynamic Structural Modeling

820435

View Details

TECHNICAL PAPER

The Effect of Oil Debris in Turbocharger Journal Bearings on Subsynchronous NVH

2015-01-1285

View Details

X