Browse Publications Technical Papers 2017-01-1086

Cylinder Head Thermo-Mechanical Fatigue Risk Assessment under Customer Usage 2017-01-1086

For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes through many different operating conditions such as cold start, through warm up, peak power, and intermediate cycles. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical fatigue (TMF) failure in combustion chamber and exhaust port. Cylinder heads having an integrated exhaust manifold are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage.
First a thermo-mechanical fatigue model is developed to simulate a known dynamometer/bench thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. The bench test was used to verify the TMF analysis approach.
For field risk assessment, the customer usage profiles (customer image) are analyzed and corresponding duty cycles are built. A thermo-mechanical fatigue analysis approach based on transient cylinder head temperature history is developed for each customer usage duty cycle, and the corresponding strain alternation is translated to a thermo-mechanical fatigue life/damage.
The risk of a cylinder head thermo-mechanical fatigue crack can be predicted from a customer image and related duty cycles.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

An Object-Oriented Approach to the Post-Processing of Cylinder Bore Distortion, Valve Seat Distortion, Valve Guide-to-Seat Misalignment and Cam Bore Misalignment


View Details


Field Risk Assessment Based on Cylinder Head Design Process to Improve High Cycle Fatigue Performance


View Details


Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis


View Details