Browse Publications Technical Papers 2017-01-1204
2017-03-28

Fast Charging Lithium-Ion Batteries 2017-01-1204

We try to understand the fast recharge capability of automotive lithium-ion batteries and its effect of fast charge on capacity degradation. We find out that 5 Ah prismatic Li-ion cells can be fully recharged in 3 minutes under a constant rate of 20C, or in 2 min (25.5C) from 0% to 85% state of charge (SOC) without undue stresses. We cycle the battery at 16C charge rate from 0 to 100%SOC and do not see any unexpected battery capacity loss in 50 cycles, where half of the cycles are charged at1C-rate as a reference capacity check. We realize that the batteries under the fast charge tests do not experience any negative impacts related to mass transport in either solid electrodes or the electrolyte system. In the paper, we propose a new procedure to measure the ac and dc resistances of the battery under continuous operation. Electrochemical impedance analyses on the whole battery and the individual electrodes are also conducted.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

A Comparative Analysis of Techniques for Electric Vehicle Battery Prognostics and Health Management (PHM)

2011-01-2247

View Details

TECHNICAL PAPER

A Modular Wide Bandwidth High Performance Automotive Lithium-Ion Cell Emulator for Hardware in the Loop Application

2018-01-0431

View Details

TECHNICAL PAPER

Model-Based Evaluation of Chemistry Selection for Dual Energy Storages for 12V Advanced Start-Stop Vehicles

2016-01-1209

View Details

X