Browse Publications Technical Papers 2017-01-1274
2017-03-28

Impact of Powertrain Type on Potential Life Cycle Greenhouse Gas Emission Reductions from a Real World Lightweight Glider 2017-01-1274

This study investigates the life cycle greenhouse gas (GHG) emissions of a set of vehicles using two real-world gliders (vehicles without powertrains or batteries); a steel-intensive 2013 Ford Fusion glider and a multi material lightweight vehicle (MMLV) glider that utilizes significantly more aluminum and carbon fiber. These gliders are used to develop lightweight and conventional models of internal combustion engine vehicles (ICV), hybrid electric vehicles (HEV), and battery electric vehicles (BEV). Our results show that the MMLV glider can reduce life cycle GHG emissions despite its use of lightweight materials, which can be carbon intensive to produce, because the glider enables a decrease in fuel (production and use) cycle emissions. However, the fuel savings, and thus life cycle GHG emission reductions, differ substantially depending on powertrain type. Compared to ICVs, the high efficiency of HEVs decreases the potential fuel savings. BEVs are more efficient than HEVs but require heavy batteries to provide an acceptable driving range. A lightweight glider can allow a smaller battery to be used without sacrificing driving range. Battery downsizing is a secondary source of mass reduction that further decreases fuel use. A comparison of our results with those of other studies reveals inconsistencies and lack of powertrain-specific assumptions in the literature, which can mischaracterize the GHG emissions associated with producing lightweight vehicles, and those from potential fuel savings.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Optimizing Battery Sizing and Vehicle Lightweighting for an Extended Range Electric Vehicle

2011-01-1078

View Details

TECHNICAL PAPER

A Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services

2013-01-0500

View Details

TECHNICAL PAPER

Costs, Benefits and Range: Application of Lightweight Technology in Electric Vehicles

2019-01-0724

View Details

X