Browse Publications Technical Papers 2017-01-1551
2017-03-28

Aerodynamic Simulation of a Standalone Rotating Treaded Tire 2017-01-1551

The aerodynamics of a rotating tire can contribute up to a third of the overall aerodynamic force on the vehicle. The flow around a rotating tire is very complex and is often affected by smallest tire features. Accurate prediction of vehicle aerodynamics therefore requires modeling of tire rotation including all geometry details. Increased simulation accuracy is motivated by the needs emanating from stricter new regulations. For example, the upcoming Worldwide harmonized Light vehicles Test Procedures (WLTP) will place more emphasis on vehicle performance at higher speeds. The reason for this is to bring the certified vehicle characteristics closer to the real-world performance. In addition, WLTP will require reporting of CO2 emissions for all vehicle derivatives, including all possible wheel and tire variants. Since the number of possible derivatives can run into the hundreds for most models, their evaluation in wind tunnels might not be practically possible. Therefore, simulations are very appealing alternative especially since their use is allowed by WLTP.
As a first step in order to meet these escalating demands, the current study uses a Lattice Boltzmann method (LBM) based computational fluid dynamics (CFD) solver using an immersed boundary method (IBM) based approach to simulate and validate a standalone rotating treaded tire. Preliminary wake plane prediction results are in good agreement with experimental wake plane measurements. Effect of tire loading on wake results is also discussed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Use of an Eulerian/Lagrangian Framework to Improve the Air Intake System of an Automobile with Respect to Snow Ingress

2017-01-1319

View Details

JOURNAL ARTICLE

Further Analyses on Prediction of Automotive Spinning Wheel Flowfield with Full Width Moving Belt Wind Tunnel Results

2017-01-1519

View Details

JOURNAL ARTICLE

On the Effects of Wind Tunnel Floor Tangential Blowing on the Aerodynamic Forces of Passenger Vehicles

2017-01-1518

View Details

X