Browse Publications Technical Papers 2017-01-1551

Aerodynamic Simulation of a Standalone Rotating Treaded Tire 2017-01-1551

The aerodynamics of a rotating tire can contribute up to a third of the overall aerodynamic force on the vehicle. The flow around a rotating tire is very complex and is often affected by smallest tire features. Accurate prediction of vehicle aerodynamics therefore requires modeling of tire rotation including all geometry details. Increased simulation accuracy is motivated by the needs emanating from stricter new regulations. For example, the upcoming Worldwide harmonized Light vehicles Test Procedures (WLTP) will place more emphasis on vehicle performance at higher speeds. The reason for this is to bring the certified vehicle characteristics closer to the real-world performance. In addition, WLTP will require reporting of CO2 emissions for all vehicle derivatives, including all possible wheel and tire variants. Since the number of possible derivatives can run into the hundreds for most models, their evaluation in wind tunnels might not be practically possible. Therefore, simulations are very appealing alternative especially since their use is allowed by WLTP.
As a first step in order to meet these escalating demands, the current study uses a Lattice Boltzmann method (LBM) based computational fluid dynamics (CFD) solver using an immersed boundary method (IBM) based approach to simulate and validate a standalone rotating treaded tire. Preliminary wake plane prediction results are in good agreement with experimental wake plane measurements. Effect of tire loading on wake results is also discussed.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Use of an Eulerian/Lagrangian Framework to Improve the Air Intake System of an Automobile with Respect to Snow Ingress


View Details


Further Analyses on Prediction of Automotive Spinning Wheel Flowfield with Full Width Moving Belt Wind Tunnel Results


View Details


Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Windsor Body Test Case Summary


View Details