Browse Publications Technical Papers 2017-01-1660
2017-03-28

Secure and Privacy-Preserving Data Collection Mechanisms for Connected Vehicles 2017-01-1660

Nowadays, the automotive industry is experiencing the advent of unprecedented applications with connected devices, such as identifying safe users for insurance companies or assessing vehicle health. To enable such applications, driving behavior data are collected from vehicles and provided to third parties (e.g., insurance firms, car sharing businesses, healthcare providers). In the new wave of IoT (Internet of Things), driving statistics and users’ data generated from wearable devices can be exploited to better assess driving behaviors and construct driver models. We propose a framework for securely collecting data from multiple sources (e.g., vehicles and brought-in devices) and integrating them in the cloud to enable next-generation services with guaranteed user privacy protection. To achieve this goal, we design fine-grained privacy-aware data collection and upload policies that balance between enforcing privacy requirements and optimizing resource consumption (e.g., processing, network bandwidth). The optimal policy will be determined by the privacy index of the integrated multi-source data to be used by the specific service and the desired resource usage. Real-world experiments and privacy leakage analysis are conducted to address privacy issues in vehicle data collection and integration, raise public awareness around privacy leakage, and validate the proposed system.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-01-0478

View Details

TECHNICAL PAPER

An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software

2018-01-1075

View Details

TECHNICAL PAPER

On the Hybrid Framework of Personalization Data for the Automotive HMI

2014-01-0276

View Details

X