Browse Publications Technical Papers 2017-01-1904

An Artificial Neural Network Model to Predict Tread Pattern-Related Tire Noise 2017-01-1904

Tire-pavement interaction noise (TPIN) is a dominant source for passenger cars and trucks above 40 km/h and 70 km/h, respectively. TPIN is mainly generated from the interaction between the tire and the pavement. In this paper, twenty-two passenger car radial (PCR) tires of the same size (16 in. radius) but with different tread patterns were tested on a non-porous asphalt pavement. For each tire, the noise data were collected using an on-board sound intensity (OBSI) system at five speeds in the range from 45 to 65 mph (from 72 to 105 km/h). The OBSI system used an optical sensor to record a once-per-revolution signal to monitor the vehicle speed. This signal was also used to perform order tracking analysis to break down the total tire noise into two components: tread pattern-related noise and non-tread pattern-related noise. The spatial tread pattern profile of each tire was digitized and quantified using two spectral parameters: the tread profile spectrum characterizing the tread impact mechanism and the air volume velocity spectrum characterizing the air pumping mechanism. The two tread pattern spectra were correlated with the tread pattern-related noise spectrum using an artificial neural network (ANN) model. Multiple ANN model configurations were investigated. The experimental validation shows that the best ANN model is able to predict the tread pattern-related noise very well for typical PCR tire tread patterns of the tire size investigated at normal highway speeds.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.