Browse Publications Technical Papers 2017-01-2233
2017-10-08

Some Insights on the Stochastic Nature of Knock and the Evolution of Hot Spots in the End-Gas During the Engine Cycle from Experimental Measurements of Knock Onset and Knock Intensity 2017-01-2233

Knock in spark ignition engines is stochastic in nature. It is caused by autoignition in hot spots in the unburned end-gas ahead of the expanding flame front. Knock onset in an engine cycle can be predicted using the Livengood-Wu integral if the variation of ignition delay with pressure and temperature as well as the pressure and temperature variation with crank angle are known. However, knock intensity (KI) is determined by the evolution of the pressure wave following knock onset. In an earlier paper (SAE 2017-01-0689) we showed that KI can be approximated by KI = Z (∂T/∂x)-2 at a fixed operating condition, where Z is a function of Pko, the pressure, and (∂T/∂x) is the temperature gradient in the hot spot at knock onset. Then, from experimental measurements of KI and Pko, using five different fuels, with the engine operating at boosted conditions, a probability density function for (∂T/∂x) was established. In this paper the knock data for two other non-boosted operating conditions for the same fuels at the same engine speed in the same engine are analyzed. The crank angle at knock onset for a given fuel is more advanced at these two new conditions because of the more advanced spark timing needed to obtain knock, and this enables some insights to be gained on how the hot spots evolve during an engine cycle. With increasing crank angle, the mean absolute value of (∂T/∂x) decreases and its distribution narrows. This is consistent with a simple picture that at the start of compression in the engine cycle there is a wide distribution of scales in the turbulent temperature field and the mean temperature gradient is large but conditions become more homogenized with time (crank angle). The paper presents distributions in terms of normalized counts in histograms for other parameters related to knock onset as well as knock intensity which might be of use in modeling knock stochastically.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

A New Diagnostic Method of Knocking in a Spark-Ignition Engine Using the Wavelet Transform

2000-01-1801

View Details

TECHNICAL PAPER

Influence of direct electric field on the knock intensity in a spark-igntion engine

2000-05-0158

View Details

TECHNICAL PAPER

An Investigation of Knock in a Spark Ignition Engine Using LPG

2005-24-027

View Details

X