Browse Publications Technical Papers 2017-01-2280

Numerical Simulations of Mixture Formation in Combustion Chambers of Lean-Burn Natural Gas Engines Incorporating a Sub-Chamber 2017-01-2280

The aim of this study is to clarify the mixture formation in the combustion chamber of our developed natural gas engine incorporating the sub-chamber injection system, in which natural gas is directly injected into a combustion sub-chamber in order to completely separate rich mixture in the sub-chamber, suitable for ignition, from ultra-lean mixture in the main chamber. Mixture distributions in chambers with and without sub-chamber were numerically simulated at a variety of operating conditions. The commercial software of Fluent 16.0 was used to conduct simulations based on Reynolds averaged Navier-Stokes equations in an axial 2 dimensional numerical domain considering movements of piston. Non-reactive flow in the combustion chamber was simulated before the ignition timing at an engine speed of 2000 rpm. The turbulence model employed here is standard k-ε model. Air-fuel ratio is set with a lean condition of 30. The results obtained from the numerical simulations demonstrate higher equivalence ratio in the sub-chamber than that in the main chamber, which extends the lean limit at engine operations. Furthermore, existing probability of mixture with low equivalence ratio is higher than that without the sub-chamber, which is an evidence of lower NOx emissions from test engines incorporating the sub-chamber. On the other hand, high equivalence ratio mixture remains in the squish area of the main chamber when the sub-chamber is installed. The unburned fuels in the squish area probably cause high hydrocarbon emissions from engines, observed during engine tests. In addition, the retarded timing of injection end results in the accumulation of fuel in the sub-chamber, increasing the equivalence ratio of mixture existing in the sub-chamber. The high hydrocarbon emissions observed during engine tests under retard conditions are due to the deterioration of ignitability resulting from the richer mixture.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Development of a Heavy-Duty Turbocharged and Aftercooled CNG-Fueled Lean-Burn Engine - Conversion of a Naturally-Aspirated Diesel Engine into Otto-Type CNG Engine


View Details


Experimental and Numerical Analysis of Pre-Chamber Combustion Systems for Lean Burn Gas Engines


View Details


Evaluation of Engine Performance and Combustion in Natural Gas Engine with Pre-Chamber Plug under Lean Burn Conditions


View Details