Browse Publications Technical Papers 2017-01-2432
2017-10-08

Simulation and Test Research for Integrated Exhaust Manifold and Hot End Durability 2017-01-2432

In order to reduce emissions, size and manufacturing cost, integrated exhaust manifold become popular in gasoline engine, especially in three-cylinder engine. Moreover, due to shorter length, lighter weight, and less component connections, the exhaust manifold and hot end durability will improve apparently. In this work, an advanced cylinder head with integrated exhaust manifold is adopted in a three-cylinder turbo engine. Because of this integration characteristic, the gas retain in cylinder head longer and the temperature reach higher level than normal cylinder head, which will cause thermal fatigue failure more easily. To validate the exhaust manifold and hot end durability, series simulation and test validation work have been done. Firstly, overall steady state and transient temperature simulation was done for global model. For turbocharger, in order to simulate the outlet turbulent flow and 3d rotation, a code was compiled to define this 3d rotation. In this code, the inlet boundary was defined by turbine blade’s rotational velocity, direction and angle. Secondly, based on temperature prediction, thermal modal, high cycle fatigue (HCF) and thermal mechanical fatigue (TMF) analysis were done in sequence. According to HCF analysis, catalyst bracket fatigue factors fulfilled the require limit. According to TMF analysis, cylinder head life which contains the exhaust manifold fulfilled the life cycle target. Temperature and vibration test were done on rig test, good correlation is shown between test and simulation results. Finally, no crack failure was found inside the cylinder head and hot end after durability test, which also proved the TMF and HCF results indirectly.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Optimization of Scallop Design for Cylinder Head of a Multi-Cylinder Diesel Engine for Reduction of Combustion Deck Temperatures and Simultaneously Enhancing Combustion Deck Fatigue Margin

2021-01-1233

View Details

TECHNICAL PAPER

Unsteady Behavior in Turbocharger Turbines: Experimental Analysis and Numerical Simulation

2007-24-0081

View Details

TECHNICAL PAPER

Cylinder Air Charge Estimator in Turbocharged SI-Engines

2004-01-1366

View Details

X