Browse Publications Technical Papers 2017-01-2490
2017-09-17

Finite Element Analysis of a Brake Disc under Constant Mechanical Loading 2017-01-2490

A brake disc is one of the most critical components in modern vehicle’s brake systems; hence, thorough validation of its performances in the development process by simulations, rig and vehicle tests is essential. In this paper, a disc brake system under a constant braking torque is analyzed using finite element method, and the stress and strain in a rotating ventilated brake disc employed are studied comprehensively. From detailed examination of the stress distribution and the cyclic stress history, it is found that the maximum stress in the rotating brake disc under the constant mechanical loading only occurs at some specified locations; and the stress history is multiaxial and non-proportional. These findings will help, as guidelines, to develop suitable evaluation tools for the strength and the fatigue of the brake discs; to setup proper laboratory test procedures and equipment; and to design strong and durable brake discs. Furthermore, the stress and strain under various amplitudes of loading are analyzed, and a linear relationship between the maximum stress/strain and the amplitude of loading is established. Finally, two simplified finite element modeling methods to shorten the analysis time are evaluated.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
X