Browse Publications Technical Papers 2017-24-0153

Emission Spectroscopy Study of the Microwave Discharge Igniter 2017-24-0153

Requirements for reducing consumption of hydrocarbon fuels, as well as reducing emissions force the scientific community to develop new ignition systems. One of possible solutions is an extension of the lean ignition limit of stable combustion. With the decrease of the stoichiometry of combustible mixture the minimal size of the ignition kernel (necessary for development of combustion) increases. Therefore, it is necessary to use some special techniques to extend the ignition kernel region. Pulsed microwave discharge allows the formation of the ignition kernels of larger diameters. Although the microwave discharge igniter (MDI) was already tested for initiation of combustion and demonstrated quite promising results, the parameters of plasma was not yet studied before. Present work demonstrates the results of the dynamics of spatial structure of the MDI plasma with nanosecond time resolution. It was shown that the size of the plasma region increases from 2-4 to 10-15 mm3 during the discharge development. Gas temperature and vibrational temperature were measured with optical emission spectroscopy. The electric field in the discharge was measured from the analysis of emission intensities of the first negative (N+2(B2Σ+u) → N+2(X2Σ+u)) and the second positive (N2(C3Πu) → N2(B3Πg)) systems of molecular nitrogen. The electron density was estimated from the atomic line broadening.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Engine Efficiency Optimization under Consideration of NOX- and Knock-Limits for Medium Speed Dual Fuel Engines in Cylinder Cut-Out Operation


View Details


Optimum Control of an S.I. Engine with a λ=5 Capability


View Details


Infrared Borescopic Evaluation of High-Energy and Long-Duration Ignition Systems for Lean/Dilute Combustion in Heavy-Duty Natural-Gas Engines


View Details