Browse Publications Technical Papers 2017-36-0319
2017-11-07

Coast Down Curve Computational Modeling and Its Influence on Urban and Highway Autonomy Results 2017-36-0319

Currently, fuels development is strongly dependent on experiments. New engines and vehicles simulation methodologies contribute to speed up R & D projects deadlines, as well as reducing costs. This paper presents a modeling methodology for a vehicle deceleration load curve (coast down) prediction and simulations of coast down variations impact on urban and highway autonomies. Two coast down curve mathematical models were successfully developed and validated. The first one, based on vehicles technical specifications and empirical equations, resulted in percent differences up to 9% compared to the experimental results. This is lower than the variation established on coast down standard, which is 15%. The second, generated by regression analysis between other vehicles characteristics versus experimental results of F0 and F2 (coast down curve parameters), resulted in percent differences up to 15%, for six of the eight vehicles. A simulator of urban and highway autonomies as coast down load functions was successfully implemented. Their results presented differences of up to 1% compared to the experiments. The models and simulations presented in this paper show potential to decrease coast down and autonomies experimental tests, which require considerable human and material resources. In addition, coast down models may compensate the low coast down tracks tests availability. Their results could be used when it is not possible perform track tests.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
JOURNAL ARTICLE

Verification of ABS Models Applied in Programs for Road Accident Simulation

2010-01-0070

View Details

TECHNICAL PAPER

High-Frequency Terrain Content and Surface Interactions for Off-Road Simulations

2004-01-2641

View Details

TECHNICAL PAPER

Utilizing a Genetic Algorithm to Optimize Vehicle Simulation Trajectories: Determining Initial Velocity of a Vehicle in Yaw

2000-01-1616

View Details

X