Browse Publications Technical Papers 2018-01-0040

Design and Implementation of Adaptive Range LIDAR System (ARLS) for Autonomous Braking Assistance at High Speeds in Automobiles 2018-01-0040

Autonomous braking systems are prevalent in mid/upper-mid range vehicles today. The major drawback: acute boundary condition during which the system will function. The paper describes the implementation of Adaptive Range LIDAR Systems (ARLS) containing a state of the art collimator and wave shaper with a 140̊ sweep MEMS mirror, capable of calculating beam convergence as a function of distance, considering multiple obstacles ahead of it. The paper also describes the use of ARLS for ACC (Adaptive Cruise Control) and Autonomous braking, reinforcing the available software structure with more data points. Contrary to the other systems that detect objects/obstacles from a stationary point of reference, ARLS determines the velocity of obstacle with respect to the ground point of reference and computes most optimum brake effort curve. The brake curves are alike for every situation, as it is dynamic in nature, hence, additional electronics ensure physical curve tracing by manipulating the braking circuitry, or in some vehicles, by providing feedback to the Electronic Brakeforce Distribution Systems. Also, since the brake effort curve is dynamic with respect to time, rigorous braking is not imposed on the passenger, and that the retardation is smooth and well distributed in time.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A Study on Modeling of Driver's Braking Action to Avoid Rear-End Collision with Time Delay Neural Network


View Details


Study on a Method for Evaluating the Safety of the Braking Control Algorithm for Automated Driving System When Following


View Details


A Stochastic Physical Simulation Framework to Quantify the Effect of Rainfall on Automotive Lidar


View Details