Browse Publications Technical Papers 2018-01-0055
2018-04-03

Correlation for Predicting Two-Phase Flow Boiling Heat Transfer Coefficients for Refrigerant HFO-1234yf 2018-01-0055

Author has developed a correlation to predict flow boiling heat transfer coefficients for refrigerant evaporating in an automotive evaporator. This is a first correlation in the open literature for HFO-1234yf to predict heat transfer coefficients for automotive evaporator. The refrigerant mass flux was varied from 500 to 1200 kg/m2.s; heat flux was varied from 2 to 6.2 kW/m2; inlet refrigerant qualities from 0 to 40% and exit qualities of about 95%. The tests were conduct at 4.4 °C and the oil circulation ratio was maintained at 3%.
Experimental data has been used with MINITAB software, Version 16.1.0 to develop this correlation. Multivariate nonlinear regression analysis has been done to develop this correlation. Experimental data along with refrigerant properties, hydraulic diameter that affects Reynolds number, Prandtl number and other appropriate variables have been used to develop this correlation. Details of the newly developed correlation have been presented in the paper. The developed correlation will be used to predict flow boiling heat transfer coefficients for HFO-1234yf for automotive evaporator (laminate evaporators). The following is the developed correlation for HFO-1234yf:
hexp/hl = 2.8738 (1/Xtt)0.109.
The developed correlation predicts the experimentally obtained data within ±23%. Further studies are planned to improve this correlation and to compare predictions with other correlations in the open literature; and to study the influence of amount of lubricant (%) on flow boiling heat transfer coefficients.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

High Performance Evaporator Development

880047

View Details

TECHNICAL PAPER

Heat Transfer Characteristics of Gas Cooler in a CO2 Automobile Heat Pump System

2019-01-0912

View Details

TECHNICAL PAPER

Experimental Investigation to Determine The Effect of Laminated Evaporator's Tank Position on Heat Transfer and Pressure Drop

2002-01-1029

View Details

X