Browse Publications Technical Papers 2018-01-0107
2018-04-03

Validation of GISSMO Model for Fracture Prediction of a Third Generation Advanced High Strength Steel 2018-01-0107

Advanced high strength steels (AHSS), due to their significantly higher strength than the conventional high strength steels, are increasingly used in the automotive industry to meet future safety and fuel economy requirements. Unlike conventional steels, the properties of AHSS can vary significantly due to the different steel making processes and their fracture behaviors should be characterized. In crash analysis, a fracture model is often integrated in the simulations to predict fracture during crash events. In this paper, crash simulations including a fracture criterion are conducted for a third generation AHSS i.e., 980GEN3. A generalized incremental stress state dependent damage model (GISSMO) in LS-Dyna is employed to evaluate the fracture predictability in the crash simulations. The fracture strains of the 980GEN3 steel are experimentally characterized under various deformation modes encompassing shear, uniaxial tension, bending, plane strain and balanced biaxial stretch conditions. The GISSMO parameters are determined and calibrated using fracture tests at these deformation modes for the 980GEN3 steel. Validation simulations are performed on three-point bending component crash tests and good correlations are achieved. The validated GISSMO card for the 980GEN3 steel can be used in crash simulations of automotive structures.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X