Browse Publications Technical Papers 2018-01-0159
2018-04-03

Study of Weight Reduction and Performance Control by CFRP Local Modifying Technology 2018-01-0159

The goals of this study were to use carbon fiber reinforced epoxy resin (CFRP), which has good specific strength and specific stiffness, to tailor the properties of aluminum (AL) in the needed locations, and then study how this contributes to the reduction of part weights and vehicle vibration while enhancing vehicle dynamics. Differing linear expansion and electric potentials are issues for integrating CFRP and AL, so technology was established for joining dissimilar materials using adhesive. This technology was used to optimize the CFRP local reinforcement locations, using the wheel part as an example, and was found to have a weight reduction value of 4 kg per vehicle. In addition, natural frequency control was investigated as a method of reducing vibration, and properties were found enabling a change of the natural frequencies at a weight of 600 g less per wheel than that of aluminum. Furthermore, the results of vehicle dynamics tests confirmed that the CFRP reinforced wheel part enhances vehicle performance compared to the base wheel, with good responsiveness in the steering stability area and good yaw damping in the ride comfort area.
This technology provided effects when applied to just the wheel part, so use of CFRP reinforcement throughout the vehicle can be expected to further reduce weight and enhance performance. In addition, this CFRP local reinforcement technology can support already created mass production dies without the need for die modification, so broad commonality can also be expected.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development New Organic Composite Materials with Excellent Long-Term High-Temperature Durability and Reliability for Automotive Parts

2018-01-0151

View Details

TECHNICAL PAPER

Advanced Finite Element Analysis of a Lightweight Nanometal-Polymer Hybrid Component with Experimental Validation, and Its Applications to Vehicle Lightweighting

2018-01-0152

View Details

TECHNICAL PAPER

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-01-0149

View Details

X