Browse Publications Technical Papers 2018-01-0161
2018-04-03

Predictive GT-Power Simulation for VNT Matching on a 1.6 L Turbocharged GDI Engine 2018-01-0161

The thermal efficiency benefits of low-pressure (LP) exhaust gas recirculation (EGR) in spark-ignition engine combustion are well known. One of the greatest barriers facing adoption of LP-EGR for high power-density applications is the challenge of boosting. Variable nozzle turbines (VNTs) have recently been developed for gasoline applications operating at high exhaust gas temperatures (EGTs). The use of a single VNT as a boost device may provide a lower-cost option compared to two-stage boosting systems or 48 V electronic boost devices for some LP-EGR applications. A predictive model was created based on engine testing results from a 1.6 L turbocharged gasoline direct injection (GDI) engine [1]. The model was tuned so that it predicted burn-rates and end-gas knock over an engine operating map with varying speeds, loads, EGR rates and fuel types. Using the model, an assessment of VNT performance was performed using compressor and turbine maps made available from Honeywell Transportation Systems. Results show that the single VNT device supports LP-EGR across the operating map while maintaining realistic full-load performance and maintaining or improving upon thermal efficiency compared to a twin-scroll turbocharger. This work was done as part of the Environmental Protection Agency’s continuing assessment of advanced light-duty automotive technologies to support setting appropriate national greenhouse gas standards.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Potential of Negative Valve Overlap for Part-Load Efficiency Improvement in Gasoline Engines

2018-01-0377

View Details

TECHNICAL PAPER

Praseodymium and Yttrium Effect that Enhances the NOx Performance of a Three Way Catalyst

2018-01-0943

View Details

JOURNAL ARTICLE

Effect of Fuel-Air Mixture Dilution on Knock Intensity in an SI Engine

2018-01-0211

View Details

X