Browse Publications Technical Papers 2018-01-0198

Multi-dimensional Modeling of Non-equilibrium Plasma for Automotive Applications 2018-01-0198

While spark-ignition (SI) engine technology is aggressively moving towards challenging (dilute and boosted) combustion regimes, advanced ignition technologies generating non-equilibrium types of plasma are being considered by the automotive industry as a potential replacement for the conventional spark-plug technology. However, there are currently no models that can describe the low-temperature plasma (LTP) ignition process in computational fluid dynamics (CFD) codes that are typically used in the multi-dimensional engine modeling community. A key question for the engine modelers that are trying to describe the non-equilibrium ignition physics concerns the plasma characteristics. A key challenge is also represented by the plasma formation timescale (nanoseconds) that can hardly be resolved within a full engine cycle simulation.
This paper reports on the multi-dimensional modeling of LTP generated by a nanopulsed high-voltage discharge in a pin-to-pin electrode configuration, and evaluates the effects of ambient pressure on the post-discharge results. It is shown that a nanopulsed delivery can result in a LTP or a mode transition to an arc-like event depending on the mixture properties in the gap between the two electrodes.
It is further shown that numerical predictions of the LTP-to-arc transition point as a function of ambient pressure along with qualitative distributions of important radicals and temperature closely match recent experiments with identical geometry and discharge characteristics. As a result, the high-fidelity modeling effort described in this paper can be used as a key tool to deliver in-depth understanding of non-equilibrium plasmas for automotive applications and lead to the future implementation of dedicated models for ignition technologies that are based on non-equilibrium plasma physics.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:

Simulation of Intake System for Two Cylinder Naturally Aspirated In-Direct Injection Engine


View Details


Modeling and Simulation of a Hydraulic Free Piston Diesel Engine


View Details


A Hydrodynamic Contact Algorithm


View Details