Browse Publications Technical Papers 2018-01-0202
2018-04-03

Large-Eddy Simulation and Analysis of Turbulent Flows in a Motored Spark-Ignition Engine 2018-01-0202

Advanced research in Spark-ignition (SI) engines has been focused on dilute-combustion concepts. For example, exhaust-gas recirculation is used to lower both fuel consumption and pollutant emissions while maintaining or enhancing engine performance, durability and reliability. These advancements achieve higher engine efficiency but may deteriorate combustion stability. One symptom of instability is a large cycle-to-cycle variation (CCV) in the in-cylinder flow and combustion metrics. Large-eddy simulation (LES) is a computational fluid dynamics (CFD) method that may be used to quantify CCV through numerical prediction of the turbulent flow and combustion processes in the engine over many engine cycles.
In this study, we focus on evaluating the capability of LES to predict the in-cylinder flows and gas exchange processes in a motored SI engine installed with a transparent combustion chamber (TCC), comparing with recently published data. Numerical simulations are performed using the commercial CFD software, ANSYS Forte, employing a classical Smagorinsky sub-grid-scale (SGS) model for the LES approach. Two important aspects of the model, namely the coefficient of sub-grid viscosity used in the Smagorinsky model, and the numerical scheme for discretizing the convection term in the momentum transport equation, are evaluated.
Simulations are performed for 20 consecutive engine cycles after the simulation setup is validated by the predicted in-cylinder pressure, trapped mass, and temperature data. LES-predicted phase-averaged-mean and root-mean-square (RMS) velocity fields are compared with high-speed particle image velocimetry (PIV) data. The comparison and analysis are performed at two crank angles, representing intake and compression strokes, and on two different planes for measurement in the engine combustion chamber. A proper orthogonal decomposition (POD) technique is applied to quantify CCV in both the LES results and the PIV data, to provide a quantitative assessment of the predictions from LES. The flow field statistics predicted by the LES-Smagorinsky model match well with experimental results. Based on these simulation results, optimal practices for the use of Smagorinsky model with respect to the numerical schemes are summarized.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Enhanced Two-stage Ignition Delay Model Based on Molar Fraction of Fuel Components for SI Engine Simulation

2018-01-0849

View Details

TECHNICAL PAPER

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-01-0297

View Details

JOURNAL ARTICLE

A Model for Prediction of Knock in the Cycle Simulation by Detail Characterization of Fuel and Temperature Stratification

2015-01-1245

View Details

X