Browse Publications Technical Papers 2018-01-0237

Advanced Combustion for Improved Thermal Efficiency in an Advanced On-Road Heavy Duty Diesel Engine 2018-01-0237

For internal combustion engines, the compression ratio (r) is defined as the ratio of volume at bottom dead center to the volume at top dead center and is a fundamental design parameter influencing the thermodynamic operation of the modern combustion engine. Thermodynamic cycle analysis can show that thermal efficiency increases as the compression ratio increases. An increase in the compression ratio changes the cycle such that peak compression pressure and temperatures are increased resulting in subsequent increases in the peak combustion pressure and temperature. Since the average temperature of heat addition is increased in the cycle, the thermal efficiency would theoretically increase as long as both cycles had the same heat rejection processes. These changes in peak pressure and temperature of the cycle must also be evaluated in terms of anticipated increases in engine friction and changes to the combustion duration respectively. In order to test the thermodynamic theory on actual combustion processes present in an advanced combustion engine compression ignition engine, the study of increasing the compression ratio from 20.5 to 23.5 was performed in order to understand the sensitivity and potential to increase the engine’s brake thermal efficiency (BTE). The testing and analysis completed will highlight engine efficiency, indicated cycle responses, and combustion responses to the increased compression ratio in contrast to an accompanying thermodynamic analysis.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Experimental and Numerical Studies of Bowl Geometry Impacts on Thermal Efficiency in a Light-Duty Diesel Engine


View Details


A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry


View Details


Theoretical Study on Similarity of Diesel Combustion


View Details