Browse Publications Technical Papers 2018-01-0271

Experimental and Numerical Analysis of Spray Evolution, Hydraulics and Atomization for a 60 MPa Injection Pressure GDI System 2018-01-0271

In recent years, the GDI (Gasoline Direct Injection) technology has significantly spread over the automotive market under the continuous push toward the adoption of combustion systems featuring high thermodynamic conversion efficiency and moderate pollutant emissions. Following this path, the injection pressure level has been progressively increased from the initial 5-15 MPa level nowadays approaching 35 MPa. The main reason behind the progressive injection pressure increase in GDI engines is the improved spray atomization, ensuring a better combustion process control and lower soot emissions. On the other hand, increasing injection pressure implies more power absorbed by the pumping system and hence a penalty in terms of overall efficiency. Therefore, the right trade-off has to be found between soot formation tendency reduction thanks to improved atomization and the energetic cost of a high pressure fuel injection system.
In this paper, a 5-hole, side-mounted prototype GDI injector was tested in a wide range of injection pressure conditions - from 5 up to 60 MPa - in terms of injection rate and spray development. The injection rate was detected by means of a Zeuch-method-based Injection Analyzer. The spray global shape was investigated by high speed imaging, while the atomization level and droplet velocity were measured by means of a PDA (Phase Doppler Anemometry) system over several measuring stations from 20 to 50 mm downstream the nozzle.
A numerical model of the spray was developed and validated against the experimental data in order to simulate the spray penetration, cone angle and atomization over a wide range of injection pressure levels. The results show that the decreasing trend for the drops SMD (Sauter Mean Diameter) from 5 up to 60 MPa approaches its asymptote, suggesting an adequate cost/benefits analysis in terms of soot reduction for further injection pressure level increases.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine


View Details


Development of Air-Assisted Injection System for MPI Gasoline Engine


View Details


Prediction of Number Density, Volume Fraction and Size Distribution of Soot Particles in a Diesel Engine under Various Operating Conditions


View Details